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It is shown that the Hamiltonian function of a closed system of particles of 

identical mass and its moment of impulse are sums of the corresponding inte- 
grals of motion of the center of inertia and of A (A - 1) / 2 integrals of rela- 
tive motion where rl is the number of particles. 

Using the laws of conservation, we can separate the independent variabies 

of the multi-particle equations of motion only in particular cases revealed 

by Euler and Lagrange [ 11. To find other such cases, it is expedient to des- 
cribe the internal motion of the closed multi-particle systems in terms of the 

relative coordinates, which for the three-particle systems are defined by the 

relations @] ,I, = rJ __ ,.,. ?12 = I’:1 - I’:. n3 = ri - r3 (1) 
‘1’ -1 ,:c -+ n:; :.- 0 

where rk are independent radius vectors of the particles. Then, provided that 

the relative variables are chosen to be equivalent 

-‘1, = 'Ij+V/i* 
- 11.. .-= 1) ‘1,;. ... ‘1;; = 1; .‘- ‘Ij (2) 

we can postulate that upon differentiation only two vectors in the triangle 

(1) can vary simultaneously, and the following theorem holds. 

Theorem. The condition that the interacting particles are all of mass 
A is both necessary and sufficient for the Harniltonian function of the system 

and its moment of impulse tobe sums of the corresponding integrals of motion 

of the center of inertia and of A (A - 1) i 2 integrals of relative motion. 

1. Three-prrtlcle 8yltem:. Proof. llsing Eqs. (1) and the relation 

3 :I 

hlR = 2 mkrg, .I/ = 2 mh. (1.1) 
k=l k=l 

defining the radius vector R of the center of inertia, we connect the independent vec- 

tors with the relative coordinates by means of expressions 

rs=R-- M ‘Ii+ % tl3. 
IU, 013 

r?=H Lwn~--.l,-fl’~, 
,,1:! 

)),) (I.4 
r3 = It + .)I ~2 - -j[- 11:: 

which for the equal masses are simplified as follows: 

ri - R + (- ‘11 + Q) / :j, ra -= 11 ; (no - q:) / ::, r3 = II -:- (nr - n3) ! 3 (I .::) 

Taking the conditions of equivalence (2) into account, we obtain 

“li Jrl 

allj nI( 
= 1 (i - ; + k), drlj n. 

=__I (i+kj#k) 
h 

(I.41 
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Applying the rules of differentiation of compound functions and using (1.4). we find the 
relative gradients and obtain the following operator identity : 

V cl1 - @r, -Vv,t)/3* VG=J(V, -v,l)/3, V,=@,,-Vv,)/3 (1.5) 
v,,+ v,+v,=o 

The latter is then applied to the sum or runctions V1 (rh) -I- ‘p2 (1)s) i- ‘ps (nsl possessing 
first order derivatives, to obtain the following expression which is essential to our proof: 

i Vqi i cPj('lj)=(vll,~l)+(vrl,(P*)~ +* * (Vqi’Pi) ~0 (1.6) 
i=l j=l i-1 

Indeed, differentiating with respect to time and multiplying the relations (1.2) by the 
corresponding masses mk we connect the particle impulses with the relative impulses 

qj = pjq, (where pj denote the effective masses p)) and with the center of inertia im- 

pulse P ml 
p1= m P - ql + q3r p2 - %P+qMlpa, p3- 9 P + q9 - qa (1.7) 

Using Eqs. (1) we can express the relative impulses in terms of the particle impulses, 

connecting them by the following identity 

q1= $pp - s PI. q2 = f$ p3- G p3, q3=+h+p3, V.W 

msql L rnlqz -k m2q3 E 0 

Next we obtain the Hamiltonian and Lagrangian functions in the symmetric form, with 

the motion of the center of inertia appearing as a separate term 

When the particles are identical in mass, the effective masses in (1.9) are replaced 

by p = m / 3, the Lagrangian function is supplemented with undefined Lagrange multi- 
pliers X (I,, I.,. li,) and the identity (1). and the following expressions in the relative 

coordinates are obtained for the three-particle equations of motion 

L+=L+‘),(nl+Ih+rp), $ (vn.L+) = 0 (1.10) 

$(V,;L) = (V,*Q -!- W,j) (rll +th + W3) 

After this we use the equations of motion in their explicit form 

R” -u, Wi ** zl - v,,v, + I. (1.11) 

and the identity th” $ t)~” + rp”~ C , to find the Lagrange vector multiplier 

3x = V& + v,,v, + V,V (1.12) 

When particles move along stationary trajectories, this multiplier is proportional to the 

resultant of the relative forces which are equal in magnitude to the forces of pairwise 

interaction of particles. The two-particle potentials have first order derivatives. There- 
fore, the identity (1.6) implies that the Lagrange vector multiplier and the resultant of 
the relative forces are identically equal to zero and this, naturally, does not represent 
an additional restriction on the initial values of the relative vectors. 

For h E u , the three-particle Newton equations decompose 

prh” = - v,.v, (1.13) 
1 
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while the relations (1) and (1.8) connecting the relative coordinates with impulses are 
retained, and this enables us to complete the proof which still remains somewhat less 

simple only for the Hamiltonian function. Indeed, computing the total derivative with 
respect to time of the three-particle Hamiltonian function (1.9) for mA = m , we obtain 

where the factor of 2 appears because of the relation connecting the relative coordinates 

and impulses, we can easily confirm using (1.13) that the Hamiltonian function of a 

closed system consisting of three particles of identical mass, i.s a sum of the integrals 

/I = I’ 
“.\I i 

R 

If, (u,. ‘I,) = En :- 2 e, (1.15) 
,,_‘, ]=I 

where E,, and pi are constants. Similarly, for the particles of identical mass we show 

that the moment of impulse of the closed system is equal to the sum of the integrals 
:, 

\I = Ii x I’ f 2 11, : 4, = 31, i M, (l.lG) 

, :1 .I -=I 

where M, and Mj are constant vectors. If the particle masses are different, the expres- 
sions for the relative gradients in terms of the gradients of the independent vectors are 

(l.‘?) 

and the Lagrange multiplier is not proportional to the resultant of the relative forces 

(1.18) 

In this case we have 

therefore no additional integrals are revealed in the motion of the system of particles 

with different masses. 

The changes which the relative vector triangle (1) may undergo during the motion, 

are classified together with the retained moments of relative impulses. If all three mo- 
ments (1.16) are equal to zero, then the impulses of the quasi-particles are collinear 
with the corresponding relative vectors. The quasi-particles move along the relative 

vectors the length of which varies with time, and the vectors undergo no rotation rela- 
tive to each other during the motion. Consequently, in this case the triangle (1) remains 
similar. But if the triangle (1) retains its similarity, then we find that for the gravita- 
tional potentials the relative force triangle sn-+n + nPslz A- w-w ~0 must be equi- 
lateral during the motion and we have, for M, = o , the Lagrange case [ 11. 

When the moments of the relative impulses are not zero, the resultant of the relative 

forces remains identically zero and the triangle of relative forces varies dissimilarly 
from (1). In this case the relative vectors rotate with respect to each other and their 
lengths vary with time. The triangle (1) does not remain similar during the motion and 
rotates in space relative to the center of inertia, the latter naturally havingnueffect on 
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the motion. 

1. Syntom, oontrlning a flnito number of prrticlec of identical 
mra8. Internal motion of a multi-partical system can be described using not more 

than N = CR relative coordinates qj = ri - r,,. provided that these coordinates are 

connected in triads by the following conditions : 

(2.1) 

j=o 

where dj = f i (depending on the selected directions of the relative vectors). Indeed, 
in this case we can choose the relative coordinates to be equivalent to (2) and show that 

the Hamiltonian function of the multi-particle system and its moment of impulse will 

be sums of the corresponding integrals 

11 = HXl’i- 2 'Ij 7 Xqj = .llO -t 2 Mj (2.2) 

J--l 1=1 

in which M = Am, p = w/A, where A is a number of particles. 

The additional integrals of relative motion obtained here donot agree with the results 

of the Bruns theorem [3] which states that the classical integrals are the only independ- 

ent integrals of the multi-particle motion. Indeed, Bruns based his proof on the equations 
of motion written in the independent coordinates [3] 

drk yg = VPkN. 
dQk 
dt=-V H 

‘k 

while in the present case we have more equations 

dR dP 
-=” 

dt 
- = 0. 

dtlj dqj 
’ dt ’ 7-V Hjv 

qj dl- - VqjHj (2.4) 

where v is the velocity of the center of inertia, and the relative coordinates in these 

equations are connected by certain conditions. This naturally makes it impossible, ac- 
cording to Bruns, to prove the existence of additional laws of conservation. 

The author expresses his gratitude to V.S. Novoselov for constructive criticism. 
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